Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Acta Neuropathol Commun ; 12(1): 68, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664739

ABSTRACT

Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.


Subject(s)
Alzheimer Disease , Gene Expression Profiling , Metallothionein , Mitochondria , Unfolded Protein Response , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Metallothionein/genetics , Metallothionein/metabolism , Female , Male , Aged , Unfolded Protein Response/genetics , Unfolded Protein Response/physiology , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Aged, 80 and over , Resilience, Psychological
2.
Front Mol Neurosci ; 16: 1277958, 2023.
Article in English | MEDLINE | ID: mdl-38025265

ABSTRACT

Introduction: Pituitary adenylate cyclase-activating peptide (PACAP) is a stress-related neuropeptide that is produced in several brain areas. It acts by 3 receptors: PACAP type-1 (PAC1), vasoactive intestinal peptide (VIP) -1 and -2 (VPAC1 and 2). Data on polymorphisms in PACAP and PAC1 indicate a relationship of the PACAP system with schizophrenia (SCZ). Methods: The prefrontal cortex was chosen to measure PACAP-gene related expression changes, since this is a central structure in the symptoms of schizophrenia (SCZ). We investigated alterations in the expression of the PACAP-related genes by qPCR in the human dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of 35 SCZ patients and 34 matched controls in relation to SCZ, suicide, gender and medication. Results: The ACC revealed an upregulation in PACAP, PAC1, VPAC1 and VPAC2 in SCZ suicide (S) completers compared to controls. An increase in PACAP, VPAC1 and VPAC2 expression was also present in the ACC in SCZ-S compared to SCZ patients who died naturally (SCZ-N). In the DLPFC, an increase in PAC1 was found in SCZ-N patients compared to SCZ-S and controls. Moreover, an increase in all PACAP-related genes was present in SCZ-N male patients compared to SCZ-N females. Concluding, expression changes were found in PACAP-related genes in relation to SCZ, suicide and gender. In particular, there was a higher PACAP-related gene expression in SCZ patients in the ACC in relation to suicide and in DLPFC in relation to SCZ. Discussion: These findings suggest a potential link between PACAP and the pathophysiology of SCZ and suicide. Further research is needed to understand the functional significance and potential clinical applications of these changes.

3.
Ann Neurol ; 94(4): 762-771, 2023 10.
Article in English | MEDLINE | ID: mdl-37395722

ABSTRACT

OBJECTIVE: Narcolepsy type 1 (NT1) is assumed to be caused solely by a lack of hypocretin (orexin) neurotransmission. Recently, however, we found an 88% reduction in corticotropin-releasing hormone (CRH)-positive neurons in the paraventricular nucleus (PVN). We assessed the remaining CRH neurons in NT1 to determine whether they co-express vasopressin (AVP) to reflect upregulation. We also systematically assessed other wake-systems, since current NT1 treatments target histamine, dopamine, and norepinephrine pathways. METHODS: In postmortem tissue of people with NT1 and matched controls, we immunohistochemically stained and quantified neuronal populations expressing: CRH and AVP in the PVN, and CRH in the Barrington nucleus; the key neuronal histamine-synthesizing enzyme, histidine decarboxylase (HDC) in the hypothalamic tuberomammillary nucleus (TMN); the rate-limited-synthesizing enzyme, tyrosine hydroxylase (TH), for dopamine in the mid-brain and for norepinephrine in the locus coeruleus (LC). RESULTS: In NT1, there was: a 234% increase in the percentage of CRH cells co-expressing AVP, while there was an unchanged integrated optical density of CRH staining in the Barrington nucleus; a 36% increased number of histamine neurons expressing HDC, while the number of typical human TMN neuronal profiles was unchanged; a tendency toward an increased density of TH-positive neurons in the substantia nigra compacta; while the density of TH-positive LC neurons was unchanged. INTERPRETATION: Our findings suggest an upregulation of activity by histamine neurons and remaining CRH neurons in NT1. This may explain earlier reports of normal basal plasma cortisol levels but lower levels after dexamethasone suppression. Alternatively, CRH neurons co-expressing AVP neurons are less vulnerable. ANN NEUROL 2023;94:762-771.


Subject(s)
Arginine Vasopressin , Narcolepsy , Humans , Dopamine , Histamine , Corticotropin-Releasing Hormone , Norepinephrine/metabolism , Narcolepsy/genetics
4.
Psychol Med ; 53(16): 7537-7549, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37226771

ABSTRACT

BACKGROUND: Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is involved in the stress response and may play a key role in mood disorders, but no information is available on PACAP for the human brain in relation to mood disorders. METHODS: PACAP-peptide levels were determined in a major stress-response site, the hypothalamic paraventricular nucleus (PVN), of people with major depressive disorder (MDD), bipolar disorder (BD) and of a unique cohort of Alzheimer's disease (AD) patients with and without depression, all with matched controls. The expression of PACAP-(Adcyap1mRNA) and PACAP-receptors was determined in the MDD and BD patients by qPCR in presumed target sites of PACAP in stress-related disorders, the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). RESULTS: PACAP cell bodies and/or fibres were localised throughout the hypothalamus with differences between immunocytochemistry and in situ hybridisation. In the controls, PACAP-immunoreactivity-(ir) in the PVN was higher in women than in men. PVN-PACAP-ir was higher in male BD compared to the matched male controls. In all AD patients, the PVN-PACAP-ir was lower compared to the controls, but higher in AD depressed patients compared to those without depression. There was a significant positive correlation between the Cornell depression score and PVN-PACAP-ir in all AD patients combined. In the ACC and DLPFC, alterations in mRNA expression of PACAP and its receptors were associated with mood disorders in a differential way depending on the type of mood disorder, suicide, and psychotic features. CONCLUSION: The results support the possibility that PACAP plays a role in mood disorder pathophysiology.


Subject(s)
Alzheimer Disease , Bipolar Disorder , Depressive Disorder, Major , Female , Humans , Male , Alzheimer Disease/metabolism , Bipolar Disorder/metabolism , Depression , Depressive Disorder, Major/metabolism , Hypothalamus/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Prefrontal Cortex/metabolism
5.
Alzheimers Dement ; 19(9): 3848-3857, 2023 09.
Article in English | MEDLINE | ID: mdl-36960685

ABSTRACT

INTRODUCTION: Women are more vulnerable to Alzheimer's disease (AD) than men. The entorhinal cortex (EC) is one of the earliest structures affected in AD. We identified in cognitively intact elderly different molecular changes in the EC in relation to age. METHODS: Changes in 12 characteristic molecules in relation to age were determined by quantitative immunohistochemistry or in situ hybridization in the EC. They were arbitrarily grouped into sex steroid-related molecules, markers of neuronal activity, neurotransmitter-related molecules, and cholinergic activity-related molecules. RESULTS: The changes in molecules indicated increasing local estrogenic and neuronal activity accompanied by a higher and faster hyperphosphorylated tau accumulation in women's EC in relation to age, versus a mainly stable local estrogenic/androgenic and neuronal activity in men's EC. DISCUSSION: EC employs a different neurobiological strategy in women and men to maintain cognitive function, which seems to be accompanied by an earlier start of AD in women. HIGHLIGHTS: Local estrogen system is activated with age only in women's entorhinal cortex (EC). EC neuronal activity increased with age only in elderly women with intact cognition. Men and women have different molecular strategies to retain cognition with aging. P-tau accumulation in the EC was higher and faster in cognitively intact elderly women.


Subject(s)
Alzheimer Disease , Entorhinal Cortex , Male , Humans , Female , Aged , Alzheimer Disease/genetics , Aging
6.
EBioMedicine ; 84: 104266, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36126617

ABSTRACT

BACKGROUND: Oxytocin (OXT) and corticotropin-releasing hormone (CRH) are both produced in hypothalamic paraventricular nucleus (PVN). Central CRH may cause depression-like symptoms, while peripheral higher OXT plasma levels were proposed to be a trait marker for bipolar disorder (BD). We aimed to investigate differential OXT and CRH expression in the PVN and their receptors in prefrontal cortex of major depressive disorder (MDD) and BD patients. In addition, we investigated mood-related changes by stimulating PVN-OXT in mice. METHODS: Quantitative immunocytochemistry and in situ hybridization were performed in the PVN for OXT and CRH on 6 BD and 6 BD-controls, 9 MDD and 9 MDD-controls. mRNA expressions of their receptors (OXTR, CRHR1 and CRHR2) were determined in anterior cingulate cortex and dorsolateral prefrontal cortex (DLPFC) of 30 BD and 34 BD-controls, and 24 MDD and 12 MDD-controls. PVN of 41 OXT-cre mice was short- or long-term activated by chemogenetics, and mood-related behavior was compared with 26 controls. FINDINGS: Significantly increased OXT-immunoreactivity (ir), OXT-mRNA in PVN and increased OXTR-mRNA in DLPFC, together with increased ratios of OXT-ir/CRH-ir and OXTR-mRNA/CRHR-mRNA were observed in BD, at least in male BD patients, but not in MDD patients. PVN-OXT stimulation induced depression-like behaviors in male mice, and mixed depression/mania-like behaviors in female mice in a time-dependent way. INTERPRETATION: Increased PVN-OXT and DLPFC-OXTR expression are characteristic for BD, at least for male BD patients. Stimulation of PVN-OXT neurons induced mood changes in mice, in a pattern different from BD. FUNDING: National Natural Science Foundation of China (81971268, 82101592).


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Animals , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Female , Male , Mice , Oxytocin , RNA, Messenger/genetics
7.
Transl Psychiatry ; 12(1): 275, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35821008

ABSTRACT

We investigated for the first time the proteomic profiles both in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of major depressive disorder (MDD) and bipolar disorder (BD) patients. Cryostat sections of DLPFC and ACC of MDD and BD patients with their respective well-matched controls were used for study. Proteins were quantified by tandem mass tag and high-performance liquid chromatography-mass spectrometry system. Gene Ontology terms and functional cluster alteration were analyzed through bioinformatic analysis. Over 3000 proteins were accurately quantified, with more than 100 protein expressions identified as significantly changed in these two brain areas of MDD and BD patients as compared to their respective controls. These include OGDH, SDHA and COX5B in the DLPFC in MDD patients; PFN1, HSP90AA1 and PDCD6IP in the ACC of MDD patients; DBN1, DBNL and MYH9 in the DLPFC in BD patients. Impressively, depending on brain area and distinct diseases, the most notable change we found in the DLPFC of MDD was 'suppressed energy metabolism'; in the ACC of MDD it was 'suppressed tissue remodeling and suppressed immune response'; and in the DLPFC of BD it was differentiated 'suppressed tissue remodeling and suppressed neuronal projection'. In summary, there are distinct proteomic changes in different brain areas of the same mood disorder, and in the same brain area between MDD and BD patients, which strengthens the distinct pathogeneses and thus treatment targets.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Aged , Gyrus Cinguli , Humans , Magnetic Resonance Imaging/methods , Profilins/metabolism , Proteomics
8.
Sci Adv ; 8(17): eabj7892, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35476433

ABSTRACT

We present the first three-dimensional (3D) concordance maps of cyto- and fiber architecture of the human brain, combining histology, immunohistochemistry, and 7-T quantitative magnetic resonance imaging (MRI), in two individual specimens. These 3D maps each integrate data from approximately 800 microscopy sections per brain, showing neuronal and glial cell bodies, nerve fibers, and interneuronal populations, as well as ultrahigh-field quantitative MRI, all coaligned at the 200-µm scale to the stacked blockface images obtained during sectioning. These unprecedented 3D multimodal datasets are shared without any restrictions and provide a unique resource for the joint study of cell and fiber architecture of the brain, detailed anatomical atlasing, or modeling of the microscopic underpinnings of MRI contrasts.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/pathology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Microscopy , Nerve Fibers
9.
Ann Neurol ; 91(2): 282-288, 2022 02.
Article in English | MEDLINE | ID: mdl-34981555

ABSTRACT

Narcolepsy type 1 (NT1) is a chronic sleep disorder correlated with loss of hypocretin(orexin). In NT1 post-mortem brains, we observed 88% reduction in corticotropin-releasing hormone (CRH)-positive neurons in the paraventricular nucleus (PVN) and significantly less CRH-positive fibers in the median eminence, whereas CRH-neurons in the locus coeruleus and thalamus, and other PVN neuronal populations were spared: that is, vasopressin, oxytocin, tyrosine hydroxylase, and thyrotropin releasing hormone-expressing neurons. Other hypothalamic cell groups, that is, the suprachiasmatic, ventrolateral preoptic, infundibular, and supraoptic nuclei and nucleus basalis of Meynert, were unaffected. The surprising selective decrease in CRH-neurons provide novel targets for diagnostics and therapeutic interventions. ANN NEUROL 2022;91:282-288.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Hypothalamus/pathology , Narcolepsy/pathology , Neurons/pathology , Aged , Aged, 80 and over , Cell Count , Female , Humans , Hypothalamus/diagnostic imaging , Immunohistochemistry , Locus Coeruleus/cytology , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/metabolism , Male , Median Eminence/cytology , Median Eminence/diagnostic imaging , Median Eminence/metabolism , Middle Aged , Narcolepsy/diagnostic imaging , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/diagnostic imaging , Paraventricular Hypothalamic Nucleus/metabolism
10.
Neuroimage ; 239: 118255, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34119638

ABSTRACT

In Parkinson's disease, the depletion of iron-rich dopaminergic neurons in nigrosome 1 of the substantia nigra precedes motor symptoms by two decades. Methods capable of monitoring this neuronal depletion, at an early disease stage, are needed for early diagnosis and treatment monitoring. Magnetic resonance imaging (MRI) is particularly suitable for this task due to its sensitivity to tissue microstructure and in particular, to iron. However, the exact mechanisms of MRI contrast in the substantia nigra are not well understood, hindering the development of powerful biomarkers. In the present report, we illuminate the contrast mechanisms in gradient and spin echo MR images in human nigrosome 1 by combining quantitative 3D iron histology and biophysical modeling with quantitative MRI on post mortem human brain tissue. We show that the dominant contribution to the effective transverse relaxation rate (R2*) in nigrosome 1 originates from iron accumulated in the neuromelanin of dopaminergic neurons. This contribution is appropriately described by a static dephasing approximation of the MRI signal. We demonstrate that the R2* contribution from dopaminergic neurons reflects the product of cell density and cellular iron concentration. These results demonstrate that the in vivo monitoring of neuronal density and iron in nigrosome 1 may be feasible with MRI and provide directions for the development of biomarkers for an early detection of dopaminergic neuron depletion in Parkinson's disease.


Subject(s)
Dopaminergic Neurons/chemistry , Iron/analysis , Magnetic Resonance Imaging/methods , Substantia Nigra/cytology , Aged, 80 and over , Biophysics , Ferritins/analysis , Humans , Male , Melanins/analysis , Middle Aged , Models, Neurological , Parkinson Disease/metabolism , Parkinson Disease/pathology , Software , Substantia Nigra/chemistry
11.
Neuropathol Appl Neurobiol ; 47(7): 958-966, 2021 12.
Article in English | MEDLINE | ID: mdl-33969531

ABSTRACT

AIMS: Women are more vulnerable to Alzheimer's disease (AD) than men. We investigated (i) whether and at what age the AD hallmarks, that is, ß-amyloid (Aß) and hyperphosphorylated Tau (p-Tau) show sex differences; and (ii) whether such sex differences may occur in cognitively intact elderly individuals. METHODS: We first analysed the entire post-mortem brain collection of all non-demented 'controls' and AD donors from our Brain Bank (245 men and 403 women), for the presence of sex differences in AD hallmarks. Second, we quantitatively studied possible sex differences in Aß, Aß42 and p-Tau in the entorhinal cortex of well-matched female (n = 31) and male (n = 21) clinically cognitively intact elderly individuals. RESULTS: Women had significantly higher Braak stages for tangles and amyloid scores than men, after 80 years. In the cognitively intact elderly, women showed higher levels of p-Tau, but not Aß or Aß42, in the entorhinal cortex than men, and a significant interaction of sex with age was found only for p-Tau but not Aß or Aß42. CONCLUSIONS: Enhanced p-Tau in the entorhinal cortex may play a major role in the vulnerability to AD in women.


Subject(s)
Aging/physiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Neurofibrillary Tangles/pathology , Aged , Aged, 80 and over , Entorhinal Cortex/metabolism , Female , Humans , Male , Sex Characteristics , tau Proteins/metabolism
12.
Front Neuroanat ; 14: 536838, 2020.
Article in English | MEDLINE | ID: mdl-33117133

ABSTRACT

Post mortem magnetic resonance imaging (MRI) studies on the human brain are of great interest for the validation of in vivo MRI. It facilitates a link between functional and anatomical information available from MRI in vivo and neuroanatomical knowledge available from histology/immunocytochemistry. However, linking in vivo and post mortem MRI to microscopy techniques poses substantial challenges. Fixation artifacts and tissue deformation of extracted brains, as well as co registration of 2D histology to 3D MRI volumes complicate direct comparison between modalities. Moreover, post mortem brain tissue does not have the same physical properties as in vivo tissue, and therefore MRI approaches need to be adjusted accordingly. Here, we present a pipeline in which whole-brain human post mortem in situ MRI is combined with subsequent tissue processing of the whole human brain, providing a 3-dimensional reconstruction via blockface imaging. To this end, we adapted tissue processing procedures to allow both post mortem MRI and subsequent histological and immunocytochemical processing. For MRI, tissue was packed in a susceptibility matched solution, tailored to fit the dimensions of the MRI coil. Additionally, MRI sequence parameters were adjusted to accommodate T1 and T2∗ shortening, and scan time was extended, thereby benefiting the signal-to-noise-ratio that can be achieved using extensive averaging without motion artifacts. After MRI, the brain was extracted from the skull and subsequently cut while performing optimized blockface imaging, thereby allowing three-dimensional reconstructions. Tissues were processed for Nissl and silver staining, and co-registered with the blockface images. The combination of these techniques allows direct comparisons across modalities.

13.
Brain Struct Funct ; 224(9): 3213-3227, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31562531

ABSTRACT

The subthalamic nucleus (STN) is successfully used as a surgical target for deep brain stimulation in the treatment of movement disorders. Interestingly, the internal structure of the STN is still incompletely understood. The objective of the present study was to investigate three-dimensional (3D) immunoreactivity patterns for 12 individual protein markers for GABA-ergic, serotonergic, dopaminergic as well as glutamatergic signaling. We analyzed the immunoreactivity using optical densities and created a 3D reconstruction of seven postmortem human STNs. Quantitative modeling of the reconstructed 3D immunoreactivity patterns revealed that the applied protein markers show a gradient distribution in the STN. These gradients were predominantly organized along the ventromedial to dorsolateral axis of the STN. The results are of particular interest in view of the theoretical underpinning for surgical targeting, which is based on a tripartite distribution of cognitive, limbic and motor function in the STN.


Subject(s)
Neurons/cytology , Neurons/metabolism , Subthalamic Nucleus/cytology , Subthalamic Nucleus/metabolism , Aged , Aged, 80 and over , Dopamine/metabolism , Female , Glutamic Acid/metabolism , Humans , Imaging, Three-Dimensional , Male , Microscopy , Neuroanatomy , Optical Imaging , Serotonin/metabolism , gamma-Aminobutyric Acid/metabolism
14.
Neurosci Bull ; 35(2): 205-215, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30706412

ABSTRACT

The locus coeruleus (LC) has been studied in major depressive disorder (MDD) and bipolar disorder (BD). A major problem of immunocytochemical studies in the human LC is interference with the staining of the immunocytochemical end-product by the omnipresent natural brown pigment neuromelanin. Here, we used a multispectral method to untangle the two colors: blue immunocytochemical staining and brown neuromelanin. We found significantly increased tyrosine hydroxylase (TH) in the LC of MDD patients-thus validating the method-but not in BD patients, and we did not find significant changes in the receptor tyrosine-protein kinase ErbB4 in the LC in MDD or BD patients. We observed clear co-localization of ErbB4, TH, and neuromelanin in the LC neurons. The different stress-related molecular changes in the LC may contribute to the different clinical symptoms in MDD and BD.


Subject(s)
Bipolar Disorder/metabolism , Depressive Disorder, Major/metabolism , Locus Coeruleus/metabolism , Melanins/metabolism , Receptor, ErbB-4/metabolism , Tyrosine 3-Monooxygenase/metabolism , Aged , Aged, 80 and over , Bipolar Disorder/pathology , Depressive Disorder, Major/pathology , Female , Humans , Image Processing, Computer-Assisted , Immunohistochemistry/methods , Locus Coeruleus/pathology , Male , Microscopy/methods , Middle Aged , Neurons/metabolism , Neurons/pathology , Sensitivity and Specificity , Spectrum Analysis/methods
15.
Neurosci Bull ; 35(2): 244-252, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30604279

ABSTRACT

Investigating the pathophysiological mechanisms underlying brain disorders is a priority if novel therapeutic strategies are to be developed. In vivo studies of animal models and in vitro studies of cell lines/primary cell cultures may provide useful tools to study certain aspects of brain disorders. However, discrepancies among these studies or unsuccessful translation from animal/cell studies to human/clinical studies often occur, because these models generally represent only some symptoms of a neuropsychiatric disorder rather than the complete disorder. Human brain slice cultures from postmortem tissue or resected tissue from operations have shown that, in vitro, neurons and glia can stay alive for long periods of time, while their morphological and physiological characteristics, and their ability to respond to experimental manipulations are maintained. Human brain slices can thus provide a close representation of neuronal networks in vivo, be a valuable tool for investigation of the basis of neuropsychiatric disorders, and provide a platform for the evaluation of novel pharmacological treatments of human brain diseases. A brain bank needs to provide the necessary infrastructure to bring together donors, hospitals, and researchers who want to investigate human brain slices in cultures of clinically and neuropathologically well-documented material.


Subject(s)
Brain , Tissue Culture Techniques , Brain/drug effects , Brain/physiopathology , Brain Diseases/drug therapy , Brain Diseases/physiopathology , Humans
17.
Brain Struct Funct ; 222(9): 4079-4088, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28608287

ABSTRACT

In depression, disrupted circadian rhythms reflect abnormalities in the central circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Although many SCN neurons are said to be GABAergic, it was not yet known whether and how SCN GABA changes occur in the SCN in depression. We, therefore, studied GABA in the SCN in relation to the changes in arginine vasopressin (AVP), which is one of the major SCN output systems. Postmortem hypothalamus specimens of 13 subjects suffering from depression and of 13 well-matched controls were collected. Quantitative immunocytochemistry was used to analyze the protein levels of glutamic acid decarboxylase (GAD)65/67 and AVP, and quantitative in situ hybridization was used to measure transcript levels of GAD67 in the SCN. There were a significant 58% increase of SCN GAD65/67-ir and a significant 169% increase of SCN GAD67-mRNA in the depression group. In addition, there were a significant 253% increase of AVP-ir in female depression subjects but not in male depression patients. This sex difference was supported by a re-analysis of SCN AVP-ir data of a previous study of our group. Moreover, SCN-AVP-ir showed a significant negative correlation with age in the control group and in the male, but not in the female depression group. Given the crucial role of GABA in mediating SCN function, our finding of increased SCN GABA expression may significantly contribute to the disordered circadian rhythms in depression. The increased SCN AVP-ir in female-but not in male-depression patients-may reflect the higher vulnerability for depression in women.


Subject(s)
Depression/pathology , Glutamate Decarboxylase/metabolism , Suprachiasmatic Nucleus/metabolism , Aged , Aged, 80 and over , Arginine Vasopressin/metabolism , Female , Glutamate Decarboxylase/genetics , Humans , Male , RNA, Messenger/metabolism , Sex Factors , Statistics, Nonparametric , Suprachiasmatic Nucleus/ultrastructure , gamma-Aminobutyric Acid/metabolism
18.
EBioMedicine ; 18: 311-319, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28377228

ABSTRACT

BACKGROUND: Neurophysiological and behavioral processes regulated by hypocretin (orexin) are severely affected in depression. However, alterations in hypocretin have so far not been studied in the human brain. We explored the hypocretin system changes in the hypothalamus and cortex in depression from male and female subjects. METHODS: We quantified the differences between depression patients and well-matched controls, in terms of hypothalamic hypocretin-1 immunoreactivity (ir) and hypocretin receptors (Hcrtr-receptors)-mRNA in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex. In addition, we determined the alterations in the hypocretin system in a frequently used model for depression, the chronic unpredictable mild stress (CUMS) rat. RESULTS: i) Compared to control subjects, the amount of hypocretin-immunoreactivity (ir) was significantly increased in female but not in male depression patients; ii) hypothalamic hypocretin-ir showed a clear diurnal fluctuation, which was absent in depression; iii) male depressive patients who had committed suicide showed significantly increased ACC Hcrt-receptor-2-mRNA expression compared to male controls; and iv) female but not male CUMS rats showed a highly significant positive correlation between the mRNA levels of corticotropin-releasing hormone and prepro-hypocretin in the hypothalamus, and a significantly increased Hcrt-receptor-1-mRNA expression in the frontal cortex compared to female control rats. CONCLUSIONS: The clear sex-related change found in the hypothalamic hypocretin-1-ir in depression should be taken into account in the development of hypocretin-targeted therapeutic strategies.


Subject(s)
Depressive Disorder, Major/pathology , Orexins/metabolism , Aged , Aged, 80 and over , Animals , Bipolar Disorder/metabolism , Bipolar Disorder/pathology , Corticosterone/blood , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Depressive Disorder, Major/metabolism , Disease Models, Animal , Female , Gyrus Cinguli/metabolism , Humans , Hypothalamus/metabolism , Immunohistochemistry , Male , Middle Aged , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexins/genetics , Prefrontal Cortex/metabolism , Protein Precursors/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sex Characteristics
19.
Neuropsychopharmacology ; 42(10): 2064-2071, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28447621

ABSTRACT

Oxytocin (OXT), synthesized in the hypothalamic paraventricular nucleus (PVN) and then released into different brain areas, may play a crucial role in various behaviors and neuropsychiatric disorders, including depression. Testosterone has been proposed by clinical studies to have the opposite effect of oxytocin in these disorders. We began by studying, in the postmortem hypothalamus of fifteen patients with mood disorders and fifteen matched controls, the expression of OXT in the PVN by means of immunocytochemistry (ICC) and the co-localization of OXT and androgen receptor (AR) by means of double labeling ICC. Subsequently, the regulatory effect of AR on OXT gene expression was studied in vitro. We found a higher expression of PVN OXT in the mood disorder patients than in the control subjects, and observed a clear co-localization of AR in OXT-expressing neurons, both in the cytoplasm and in the nucleus. In addition, a significant decrease in OXT-mRNA levels was observed after pre-incubation of the SK-N-SH cells with testosterone. A further potential androgen-responsive element in the human OXT gene promotor was revealed by electrophoretic mobility shift assays and co-transfections in neuroblastoma cells. Finally, in vitro studies demonstrated that AR mediated the down-regulation of OXT gene expression. These results suggest that the fact that OXT and testosterone appear to have opposite effects in neuropsychiatric disorders might be based upon a direct inhibition of AR on OXT transcription, which may provide a novel target for therapeutic strategies in depression.


Subject(s)
Hypothalamus/metabolism , Mood Disorders/metabolism , Oxytocin/metabolism , Receptors, Androgen/metabolism , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cytoplasm/drug effects , Cytoplasm/metabolism , Cytoplasm/pathology , Gene Expression , Humans , Hypothalamus/pathology , Immunohistochemistry , Mood Disorders/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Oxytocin/genetics , Promoter Regions, Genetic , RNA, Messenger/metabolism , Testosterone/administration & dosage , Testosterone/metabolism
20.
Psychoneuroendocrinology ; 77: 56-62, 2017 03.
Article in English | MEDLINE | ID: mdl-28024269

ABSTRACT

A hyperactive hypothalamo-pituitary-adrenal (HPA) axis is a prominent feature in depression. It has been shown that androgens inhibit HPA activity and that estrogens stimulate it. We have therefore investigated, in human postmortem hypothalamus, whether depression features an increase in aromatase, which is the rate-limiting enzyme for the conversion of androgens to estrogens. In addition, we have tested the effect of an aromatase inhibitor on depression-like symptoms in a frequently used animal model for depression. At first, aromatase immunoreactivity (ir) was quantified in the central part of the hypothalamic paraventricular nucleus (PVN) of 10 major depressive disorder (MDD) patients and 10 well-matched control subjects. Subsequently an animal experimental study was performed using the chronic unpredictable mild stress (CUMS) rats as depression model. The effect of administration of 1,4,6-androstatriene-3,17-dione (ATD), an aromatase inhibitor, was investigated by silastic capsule implantation. In the postmortem study, the amount of PVN aromatase-ir decreased significantly in the MDD group compared to the controls (P=0.029). In the animal study, ATD was found to cause significantly increased testosterone (T) levels, both in plasma and in the hypothalamus. However, ATD administration did not show significant effects on the depression-like behaviors or plasma corticosterone levels in CUMS rats. Based on our observations in human postmortem material and the animal experiment, we have to conclude that alterations in aromatase in adulthood do not seem to play a major role in the pathogenesis of the symptoms of depression.


Subject(s)
Aromatase/metabolism , Depressive Disorder, Major/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Aged , Aged, 80 and over , Androstatrienes/pharmacology , Animals , Aromatase Inhibitors/pharmacology , Disease Models, Animal , Female , Humans , Hypothalamo-Hypophyseal System/metabolism , Immunohistochemistry , Male , Middle Aged , Paraventricular Hypothalamic Nucleus/drug effects , Pituitary-Adrenal System/metabolism , Rats , Stress, Psychological/metabolism , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...